Curated by @
“cavsoriified

Learn vviui s1unin v lin Membership

Accessibility, CSS3, Design, Django, HTML & CSS, HTML5, JavaScript, jQuery, NoSQL, PHP, Responsive Web
Design, Ruby, Ruby on Rails, Tools, UX Version Control, WordPress, iOS +more

Organize Your Code with
RequiredS

By Jim Hoskins @jimrhoskins
27 September 2011 | Category: JavaScript

Writing web applications using JavaScript, HTML, and CSS can become
overwhelming quickly. Between managing Ul, data, interactions, and
network requests, application code can become a real mess, and this
isn’t helped by the way the browser loads JavaScript code.

In most other programming environments, there is some way to split your

code into modules or scripts, and specifically require one module from
another.

In JavaScript, we can split our code into multiple files, but there is

no way to declare in one script that you are depending on another. Worse
yet, the place where scripts are loaded isn’t even in the same language
you are writing your code. You load all your JavaScript dependencies
from your HTML document, not your JavaScript files. That may work for
including a little Ajax here, and an animation there, but for large

single page applications, this does not cut it.

I have had the opportunity to work on a large single page application
for Treehouse, and tried using RequireJS, and | love it.

How does RequireJS make building an application easier?

Module Definition

All of your code is written in self contained modules. Modules are small
chunks of your application that serve a specific purpose. How much code
you define in a module is left up to you. You could write your whole app
in one module, but that would be defeating the organizational benefit,
and the ability to extract or replace portions of your app easily.

A typical simple module is defined like this:

define (function () {

function method (x) {
return x + Xx;

return {
someValue: 'foobar',
myMethod: method
}
b g
Here we use the define () function to define our function. In this
example we passed in a function which will return our module. In this
case our module is an object with two properties: a string somevalue
and a function myMethod.

This code would make up the entirety of our JavaScript file for this
module. Nothing should be declared outside of a single define call.

If this code was saved in my/utils.js, this module would be defined
as the module “my/utils”.

Module Dependencies.

Defining modules is great, but we are going to need to use parts of
modules from other modules. When we define a module, we can pass a list
of module names, and RequiredS will make sure to retrieve these modules
before your module is executed, and it will pass those modules as
parameters of the definition function.

Given we still have our “my/utils” module, and another module
“models/Person”, which defines a single JavaScript class Person, here is
how we might define a module that requires both of them.

define (["models/Person", "my/utils"], function (Person,
var people = [];

people.push (new Person('Jim'));
people.push (new Person (utils.someValue));

return {people: people};
1)
Here we defined a module that we will say lives in “app/people.js”. It
required two modules, “models/Person”, and “my/utils”. These modules
were then passed to our module definition function, and we bound them to
the parameters Person and utils. We could call the parameters anything
at all, but | chose to reflect the module names.

In this example, | capitalized the Person module, since in this hypothetical module it is returning a JavaScript class,
not a normal object with properties, so | used a capitalized name as a convention.

The module then defined a people array, added a couple of Persons to it,
and exposed it as a property of its own module.

RequireJS looks at the dependencies of all the modules in your
application, and will fetch and execute all of the modules in the
proper order so that each module has exactly what it needs to run.

Running the App

Now we have our modules defined, we want to use them to actually start
an application. This will usually be done in some sort of “main” file,
which isn’t really a module.

Instead of using define () to wrap our code, in our main file we use
reqguire (). The require () function is similar, in that you pass it an
optional array of dependencies, and a function which will be executed
when those dependencies are resolved. However this code is not stored as
a named module, as its purpose is to be run immediately, much like the
main() function in a C program.

So let us say our main file is in “/scripts/main.js”, and let’s also say

that our modules were also defined under “/scripts/”. So really “my/utils”

lives in “/scripts/my/utils.js”, and “models/Person” lives in
“Iscripts/models/Person.js”, and so on. We will see how this is important later.
But our main.js might look like this:

require (["app/people”], function (people)
alert (people.people[0]);

utils’

1)
Here, we just required the “app/people module”, and bound it to people.
The people module exposed a people property, which we alerted the first
element of.

So now we need to include the JavaScript in our HTML page. We do it all
with one script tag.

<script data-main="scripts/main" src="scripts/require.js">
</script>
Our actual file structure looks like this

root/
index.html
scripts/
require.js
main.js
app/

people.js

models/

Person.js

my/

utils.js

Our script tag is including via the src attribute the require.js script

from the scripts directory. We also defined an attribute callded
data-main, with the name of our main application module “scripts/main”.
This means RequireJS will load up “/scripts/main.js” as the main entry
point.

It also sets the root directory for modules to the “/scripts/”
directory. This is why we can call a module “my/utils” when it really
lives in “/scripts/my/utils.js”. You can require a module from an
absolute location by giving its name using a leading “./” or “/” or a
full URL. Otherwise it assumes the module lives relative to the main
script.

Optimizing
While having code split into multiple files is great for organization,
it's terrible for performance. That is why RequireJS includes an

optimizer which will take the modules of your app, move them into a
single file, and minify them, to improve performance.

Bonus: RequireJS + Dojo = Awesome!

My application uses Dojo, and the entire Ul is built programatically
using custom Dojo Widgets. It turns out Dojo’s loader is compatible with
RequiredS,_if you set your application up right. This made my
application so much easier to develop and maintain.

Also, using CoffeeScript to extend Dojo Widgets is also amazing, but

that’s another post!

Follow @thinkvitamin on Twitter

Please check out Think Vitamin Membership

«

Other Posts You Might Find Interesting
e Sorry - No Related Posts Found

-
Comments

Like 3 people liked this.

Add New Comment

Optional: Login below.

Showing 3 comments

Sortby Best rating 4 Subscribe byemail []] Subscribe by RSS

flash template 3 daysago

-

This article was extremely interesting, especially since | was searching for thoughts on this subject last week.

: Like | Reply |

Mark McDonnell 3 daysago

Thanks for the article, | found this really useful as | had looked at RequireJS before and was confused as to how | could use it
(actually, | think I looked at it form the perspective of using Dojo) - but your post has helped clarify for me and I'm definitely
going to try it again :)

One issue though is the tabbing on your sub li elements have gone a bit funky. At the moment it looks like the /scripts/
directory has no content and that the main.js and require.js are placed outside of that directory (it was a little confusing at first
and so | had to go over it a couple of times to make sure that was supposed to be like that).

Oh, and one last thing, maybe consider re-writing the sentence "Our script tag is including via the src attribute the require.js
script from the scripts directory." as that too sounded a bit confusing. Maybe something like...

"Our script tag specifies that we load require.js from the /scripts/ directory."

Otherwise thanks for the sharing this info.

“Like

: Reply |

derekgreer 4 daysago

Awesome!

) et

Copyright ® 2008 - 2011 Think Vitamin.

A Blog for Web practitioners Designed, Bullt and Curated by Carsonified. Feel free to check out our HTIVL tutorlal en Think Vitamin
Membership.

Hosted by (mi) media termole
Contact Us editor@thinkvitarmin.com.

